0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 IDP
↳14 IDPNonInfProof (⇐)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔)
↳24 IDP
↳25 IDPNonInfProof (⇐)
↳26 AND
↳27 IDP
↳28 IDependencyGraphProof (⇔)
↳29 TRUE
↳30 IDP
↳31 IDependencyGraphProof (⇔)
↳32 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(1) -> (4), if ((i128[1] →* i128[4])∧(i129[1] + -1 →* i129[4])∧(i88[1] →* i88[4]))
(2) -> (3), if ((i128[2] →* i128[3])∧(i88[2] →* i88[3])∧(i129[2] →* i129[3])∧(i88[2] >= 0 && i129[2] > i88[2] && i128[2] > i88[2] →* TRUE))
(3) -> (0), if ((i88[3] →* i88[0])∧(i129[3] + -1 →* i129[0])∧(i128[3] →* i128[0]))
(3) -> (4), if ((i129[3] + -1 →* i129[4])∧(i128[3] →* i128[4])∧(i88[3] →* i88[4]))
(4) -> (5), if ((i88[4] →* i88[5])∧(i129[4] →* i129[5])∧(i129[4] <= i88[4] →* TRUE)∧(i128[4] →* i128[5]))
(5) -> (2), if ((i88[5] →* i88[2])∧(i128[5] + -1 →* i128[2])∧(i129[5] →* i129[2]))
(5) -> (6), if ((i88[5] →* i88[6])∧(i128[5] + -1 →* i128[6])∧(i129[5] →* i129[6]))
(6) -> (7), if ((i129[6] <= i88[6] && i88[6] >= 0 && i128[6] > i88[6] →* TRUE)∧(i128[6] →* i128[7])∧(i88[6] →* i88[7])∧(i129[6] →* i129[7]))
(7) -> (2), if ((i128[7] + -1 →* i128[2])∧(i129[7] →* i129[2])∧(i88[7] →* i88[2]))
(7) -> (6), if ((i129[7] →* i129[6])∧(i128[7] + -1 →* i128[6])∧(i88[7] →* i88[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(1) -> (4), if ((i128[1] →* i128[4])∧(i129[1] + -1 →* i129[4])∧(i88[1] →* i88[4]))
(2) -> (3), if ((i128[2] →* i128[3])∧(i88[2] →* i88[3])∧(i129[2] →* i129[3])∧(i88[2] >= 0 && i129[2] > i88[2] && i128[2] > i88[2] →* TRUE))
(3) -> (0), if ((i88[3] →* i88[0])∧(i129[3] + -1 →* i129[0])∧(i128[3] →* i128[0]))
(3) -> (4), if ((i129[3] + -1 →* i129[4])∧(i128[3] →* i128[4])∧(i88[3] →* i88[4]))
(4) -> (5), if ((i88[4] →* i88[5])∧(i129[4] →* i129[5])∧(i129[4] <= i88[4] →* TRUE)∧(i128[4] →* i128[5]))
(5) -> (2), if ((i88[5] →* i88[2])∧(i128[5] + -1 →* i128[2])∧(i129[5] →* i129[2]))
(5) -> (6), if ((i88[5] →* i88[6])∧(i128[5] + -1 →* i128[6])∧(i129[5] →* i129[6]))
(6) -> (7), if ((i129[6] <= i88[6] && i88[6] >= 0 && i128[6] > i88[6] →* TRUE)∧(i128[6] →* i128[7])∧(i88[6] →* i88[7])∧(i129[6] →* i129[7]))
(7) -> (2), if ((i128[7] + -1 →* i128[2])∧(i129[7] →* i129[2])∧(i88[7] →* i88[2]))
(7) -> (6), if ((i129[7] →* i129[6])∧(i128[7] + -1 →* i128[6])∧(i88[7] →* i88[6]))
(1) (i88[0]=i88[1]∧&&(>=(i88[0], 0), >(i129[0], i88[0]))=TRUE∧i129[0]=i129[1]∧i128[0]=i128[1] ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(2) (>=(i88[0], 0)=TRUE∧>(i129[0], i88[0])=TRUE ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(3) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i88[0] + [bni_16]i128[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i88[0] + [bni_16]i128[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i88[0] + [bni_16]i128[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[bni_16] = 0∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i88[0] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(7) (i88[0] ≥ 0∧i129[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[bni_16] = 0∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i88[0] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(8) (COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥NonInfC∧COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥LOAD1129(i128[1], +(i129[1], -1), i88[1])∧(UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥))
(9) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[(-1)bso_19] ≥ 0)
(10) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[(-1)bso_19] ≥ 0)
(11) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[(-1)bso_19] ≥ 0)
(12) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_19] ≥ 0)
(13) (i128[2]=i128[3]∧i88[2]=i88[3]∧i129[2]=i129[3]∧&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2]))=TRUE ⇒ LOAD1115(i128[2], i129[2], i88[2])≥NonInfC∧LOAD1115(i128[2], i129[2], i88[2])≥COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])∧(UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥))
(14) (>(i128[2], i88[2])=TRUE∧>=(i88[2], 0)=TRUE∧>(i129[2], i88[2])=TRUE ⇒ LOAD1115(i128[2], i129[2], i88[2])≥NonInfC∧LOAD1115(i128[2], i129[2], i88[2])≥COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])∧(UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥))
(15) (i128[2] + [-1] + [-1]i88[2] ≥ 0∧i88[2] ≥ 0∧i129[2] + [-1] + [-1]i88[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i88[2] + [bni_20]i128[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(16) (i128[2] + [-1] + [-1]i88[2] ≥ 0∧i88[2] ≥ 0∧i129[2] + [-1] + [-1]i88[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i88[2] + [bni_20]i128[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(17) (i128[2] + [-1] + [-1]i88[2] ≥ 0∧i88[2] ≥ 0∧i129[2] + [-1] + [-1]i88[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i88[2] + [bni_20]i128[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(18) (i128[2] ≥ 0∧i88[2] ≥ 0∧i129[2] + [-1] + [-1]i88[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i128[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(19) (i128[2] ≥ 0∧i88[2] ≥ 0∧i129[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i128[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(20) (COND_LOAD1115(TRUE, i128[3], i129[3], i88[3])≥NonInfC∧COND_LOAD1115(TRUE, i128[3], i129[3], i88[3])≥LOAD1129(i128[3], +(i129[3], -1), i88[3])∧(UIncreasing(LOAD1129(i128[3], +(i129[3], -1), i88[3])), ≥))
(21) ((UIncreasing(LOAD1129(i128[3], +(i129[3], -1), i88[3])), ≥)∧[(-1)bso_23] ≥ 0)
(22) ((UIncreasing(LOAD1129(i128[3], +(i129[3], -1), i88[3])), ≥)∧[(-1)bso_23] ≥ 0)
(23) ((UIncreasing(LOAD1129(i128[3], +(i129[3], -1), i88[3])), ≥)∧[(-1)bso_23] ≥ 0)
(24) ((UIncreasing(LOAD1129(i128[3], +(i129[3], -1), i88[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(25) (i88[4]=i88[5]∧i129[4]=i129[5]∧<=(i129[4], i88[4])=TRUE∧i128[4]=i128[5] ⇒ LOAD1129(i128[4], i129[4], i88[4])≥NonInfC∧LOAD1129(i128[4], i129[4], i88[4])≥COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])∧(UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥))
(26) (<=(i129[4], i88[4])=TRUE ⇒ LOAD1129(i128[4], i129[4], i88[4])≥NonInfC∧LOAD1129(i128[4], i129[4], i88[4])≥COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])∧(UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥))
(27) (i88[4] + [-1]i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i88[4] + [bni_24]i128[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(28) (i88[4] + [-1]i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i88[4] + [bni_24]i128[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(29) (i88[4] + [-1]i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i88[4] + [bni_24]i128[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(30) (i88[4] + [-1]i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i88[4] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(31) (i88[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i129[4] + [(-1)bni_24]i88[4] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(32) (i88[4] ≥ 0∧i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i129[4] + [(-1)bni_24]i88[4] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(33) (i88[4] ≥ 0∧i129[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])), ≥)∧[bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i129[4] + [(-1)bni_24]i88[4] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(34) (COND_LOAD11291(TRUE, i128[5], i129[5], i88[5])≥NonInfC∧COND_LOAD11291(TRUE, i128[5], i129[5], i88[5])≥LOAD1115(+(i128[5], -1), i129[5], i88[5])∧(UIncreasing(LOAD1115(+(i128[5], -1), i129[5], i88[5])), ≥))
(35) ((UIncreasing(LOAD1115(+(i128[5], -1), i129[5], i88[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(36) ((UIncreasing(LOAD1115(+(i128[5], -1), i129[5], i88[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(37) ((UIncreasing(LOAD1115(+(i128[5], -1), i129[5], i88[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(38) ((UIncreasing(LOAD1115(+(i128[5], -1), i129[5], i88[5])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
(39) (&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6]))=TRUE∧i128[6]=i128[7]∧i88[6]=i88[7]∧i129[6]=i129[7] ⇒ LOAD1115(i128[6], i129[6], i88[6])≥NonInfC∧LOAD1115(i128[6], i129[6], i88[6])≥COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])∧(UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥))
(40) (>(i128[6], i88[6])=TRUE∧<=(i129[6], i88[6])=TRUE∧>=(i88[6], 0)=TRUE ⇒ LOAD1115(i128[6], i129[6], i88[6])≥NonInfC∧LOAD1115(i128[6], i129[6], i88[6])≥COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])∧(UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥))
(41) (i128[6] + [-1] + [-1]i88[6] ≥ 0∧i88[6] + [-1]i129[6] ≥ 0∧i88[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i88[6] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(42) (i128[6] + [-1] + [-1]i88[6] ≥ 0∧i88[6] + [-1]i129[6] ≥ 0∧i88[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i88[6] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(43) (i128[6] + [-1] + [-1]i88[6] ≥ 0∧i88[6] + [-1]i129[6] ≥ 0∧i88[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i88[6] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(44) (i128[6] ≥ 0∧i88[6] + [-1]i129[6] ≥ 0∧i88[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)Bound*bni_28] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(45) (i128[6] ≥ 0∧i88[6] + [-1]i129[6] ≥ 0∧i88[6] ≥ 0∧i129[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)Bound*bni_28] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(46) (i128[6] ≥ 0∧i88[6] + i129[6] ≥ 0∧i88[6] ≥ 0∧i129[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)Bound*bni_28] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(47) (i128[6] ≥ 0∧i88[6] ≥ 0∧i129[6] + i88[6] ≥ 0∧i129[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])), ≥)∧[(-1)Bound*bni_28] + [bni_28]i128[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(48) (COND_LOAD11151(TRUE, i128[7], i129[7], i88[7])≥NonInfC∧COND_LOAD11151(TRUE, i128[7], i129[7], i88[7])≥LOAD1115(+(i128[7], -1), i129[7], i88[7])∧(UIncreasing(LOAD1115(+(i128[7], -1), i129[7], i88[7])), ≥))
(49) ((UIncreasing(LOAD1115(+(i128[7], -1), i129[7], i88[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(50) ((UIncreasing(LOAD1115(+(i128[7], -1), i129[7], i88[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(51) ((UIncreasing(LOAD1115(+(i128[7], -1), i129[7], i88[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(52) ((UIncreasing(LOAD1115(+(i128[7], -1), i129[7], i88[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_31] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1129(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_LOAD1129(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(LOAD1115(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_LOAD1115(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(COND_LOAD11291(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(<=(x1, x2)) = [-1]
POL(COND_LOAD11151(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
COND_LOAD11291(TRUE, i128[5], i129[5], i88[5]) → LOAD1115(+(i128[5], -1), i129[5], i88[5])
COND_LOAD11151(TRUE, i128[7], i129[7], i88[7]) → LOAD1115(+(i128[7], -1), i129[7], i88[7])
LOAD1115(i128[2], i129[2], i88[2]) → COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])
LOAD1115(i128[6], i129[6], i88[6]) → COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])
LOAD1129(i128[0], i129[0], i88[0]) → COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])
COND_LOAD1129(TRUE, i128[1], i129[1], i88[1]) → LOAD1129(i128[1], +(i129[1], -1), i88[1])
LOAD1115(i128[2], i129[2], i88[2]) → COND_LOAD1115(&&(&&(>=(i88[2], 0), >(i129[2], i88[2])), >(i128[2], i88[2])), i128[2], i129[2], i88[2])
COND_LOAD1115(TRUE, i128[3], i129[3], i88[3]) → LOAD1129(i128[3], +(i129[3], -1), i88[3])
LOAD1129(i128[4], i129[4], i88[4]) → COND_LOAD11291(<=(i129[4], i88[4]), i128[4], i129[4], i88[4])
LOAD1115(i128[6], i129[6], i88[6]) → COND_LOAD11151(&&(&&(<=(i129[6], i88[6]), >=(i88[6], 0)), >(i128[6], i88[6])), i128[6], i129[6], i88[6])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(3) -> (0), if ((i88[3] →* i88[0])∧(i129[3] + -1 →* i129[0])∧(i128[3] →* i128[0]))
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(2) -> (3), if ((i128[2] →* i128[3])∧(i88[2] →* i88[3])∧(i129[2] →* i129[3])∧(i88[2] >= 0 && i129[2] > i88[2] && i128[2] > i88[2] →* TRUE))
(1) -> (4), if ((i128[1] →* i128[4])∧(i129[1] + -1 →* i129[4])∧(i88[1] →* i88[4]))
(3) -> (4), if ((i129[3] + -1 →* i129[4])∧(i128[3] →* i128[4])∧(i88[3] →* i88[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(1) (COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥NonInfC∧COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥LOAD1129(i128[1], +(i129[1], -1), i88[1])∧(UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥))
(2) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
(3) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
(4) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
(5) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
(6) (i88[0]=i88[1]∧&&(>=(i88[0], 0), >(i129[0], i88[0]))=TRUE∧i129[0]=i129[1]∧i128[0]=i128[1] ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(7) (>=(i88[0], 0)=TRUE∧>(i129[0], i88[0])=TRUE ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(8) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i129[0] + [bni_10]i88[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(9) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i129[0] + [bni_10]i88[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(10) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i129[0] + [bni_10]i88[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(11) (i88[0] ≥ 0∧i129[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i88[0] + [bni_10]i129[0] ≥ 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1129(x1, x2, x3, x4)) = [1] + x4 + x3
POL(LOAD1129(x1, x2, x3)) = [1] + x2 + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
COND_LOAD1129(TRUE, i128[1], i129[1], i88[1]) → LOAD1129(i128[1], +(i129[1], -1), i88[1])
LOAD1129(i128[0], i129[0], i88[0]) → COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])
LOAD1129(i128[0], i129[0], i88[0]) → COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(3) -> (0), if ((i88[3] →* i88[0])∧(i129[3] + -1 →* i129[0])∧(i128[3] →* i128[0]))
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(1) -> (4), if ((i128[1] →* i128[4])∧(i129[1] + -1 →* i129[4])∧(i88[1] →* i88[4]))
(3) -> (4), if ((i129[3] + -1 →* i129[4])∧(i128[3] →* i128[4])∧(i88[3] →* i88[4]))
(4) -> (5), if ((i88[4] →* i88[5])∧(i129[4] →* i129[5])∧(i129[4] <= i88[4] →* TRUE)∧(i128[4] →* i128[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i128[1] →* i128[0])∧(i129[1] + -1 →* i129[0])∧(i88[1] →* i88[0]))
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] >= 0 && i129[0] > i88[0] →* TRUE)∧(i129[0] →* i129[1])∧(i128[0] →* i128[1]))
(1) (COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥NonInfC∧COND_LOAD1129(TRUE, i128[1], i129[1], i88[1])≥LOAD1129(i128[1], +(i129[1], -1), i88[1])∧(UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥))
(2) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(3) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(4) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(5) ((UIncreasing(LOAD1129(i128[1], +(i129[1], -1), i88[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
(6) (i88[0]=i88[1]∧&&(>=(i88[0], 0), >(i129[0], i88[0]))=TRUE∧i129[0]=i129[1]∧i128[0]=i128[1] ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(7) (>=(i88[0], 0)=TRUE∧>(i129[0], i88[0])=TRUE ⇒ LOAD1129(i128[0], i129[0], i88[0])≥NonInfC∧LOAD1129(i128[0], i129[0], i88[0])≥COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])∧(UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥))
(8) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i129[0] + [bni_12]i88[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(9) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i129[0] + [bni_12]i88[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(10) (i88[0] ≥ 0∧i129[0] + [-1] + [-1]i88[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i129[0] + [bni_12]i88[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(11) (i88[0] ≥ 0∧i129[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]i88[0] + [bni_12]i129[0] ≥ 0∧[(-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1129(x1, x2, x3, x4)) = [-1] + x4 + x3
POL(LOAD1129(x1, x2, x3)) = [-1] + x2 + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
COND_LOAD1129(TRUE, i128[1], i129[1], i88[1]) → LOAD1129(i128[1], +(i129[1], -1), i88[1])
LOAD1129(i128[0], i129[0], i88[0]) → COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])
LOAD1129(i128[0], i129[0], i88[0]) → COND_LOAD1129(&&(>=(i88[0], 0), >(i129[0], i88[0])), i128[0], i129[0], i88[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer